Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

μ SR Studies on the Magnetic Kondo Compounds CeNi_{1-x}Cu_x

G. M. Kalvius¹, E. Schreier¹, A. Kratzer¹, D. R. Noakes², R. Wäppling³, J. I. Espeso⁴, J. C. Gómez Sal⁴

- ¹ Physics Department, Technical University Munich, 85747 Garching, Germany
- ² Department of Physics, Virginia State University, Petersburg VA, 23806 USA
- ³ Physics Department, University of Uppsala, 75121 Uppsala, Sweden
- ⁴ Faculty of Science, University of Cantabria, 39005 Santander, Spain

 μ SR spectroscopy was carried out down to 0.1K for three polycrystalline samples: CeNi_{0.8}Cu_{0.2}, La_{0.25}Ce_{0.75}Ni_{0.8}Cu_{0.2} and CeNi_{0.4}Cu_{0.6}. The initial formation of a spin-glass-like state (SGS) [1] was verified for all three materials. This state is not a normal spin frozen state but rather a dynamic short-range ordered (SRO) random spin system. It shows field hysteretic behaviour. The presence of strong magnetic inhomogeneities agree with the μ SR data and a spin cluster system is a likely choice. The μ SR data indicates that all the inhomogeneities must occur on the local μ SR scale. At lower temperatures, below 1K, the μ SR spectra are compatible with long-range magnetic order but require indeed spin disorder in the local scale. From the μ SR point of view, the magnetic states of CeNi_{0.8}Cu_{0.2} and CeNi_{0.4}Cu_{0.6} are quite similar and not a simple FM spin arrangement. In addition, μ SR in external fields indicates that fields on the order of 250G are not shielded by the sample and that saturation magnetization must be weak. In the La-based compound, the μ SR data reveal the same characteristics but with smaller transition temperatures, as expected for magnetic dilutions.

[1] J. García Soldevilla et al., Phys. Rev. B, **61** (2000) 6821.